Using conditional entropy to identify periodicity
نویسندگان
چکیده
This paper presents a new period-finding method based on conditional entropy that is both efficient and accurate. We demonstrate its applicability on simulated and real data. We find that it has comparable performance to other information-based techniques with simulated data but is superior with real data, both for finding periods and for just identifying periodic behaviour. In particular, it is robust against common aliasing issues found with other period-finding algorithms.
منابع مشابه
A Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملTsallis Entropy and Conditional Tsallis Entropy of Fuzzy Partitions
The purpose of this study is to define the concepts of Tsallis entropy and conditional Tsallis entropy of fuzzy partitions and to obtain some results concerning this kind entropy. We show that the Tsallis entropy of fuzzy partitions has the subadditivity and concavity properties. We study this information measure under the refinement and zero mode subset relations. We check the chain rules for ...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملRisk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کاملOn Detecting Feasible Periodicity for Periodic Event in Binary Data Series
In this paper, we investigated the problem of discovering periodicity of a certain event in a binary data series and a new method basing on cross entropy is proposed. First, a series of rational partition methods for binary data series are introduced, which can divide the data series into different segments (partition). Then, we use cross entropy to calculate the partition periodicity, which co...
متن کامل